Integrated Models of Driver Behavior
نویسندگان
چکیده
Our work on modeling driver behavior in a cognitive architecture has benefited greatly from two types of integration: composition of independently developed theories and models into the framework of a cognitive architecture, and generalization of common elements of theories and models into higher-level constructs within the architecture. This chapter highlights three ways in which integration by composition and generalization have arisen in the modeling of highway driving, driver distraction, and executive control within driving. Such integration has played a critical role in the incremental development of new theories of driver behavior and the implications of these theories for other domains. At the same time, this integration has facilitated the development of practical systems that utilize these theories in real-world applications, such as predicting the distraction potential of novel in-vehicle devices.
منابع مشابه
MANFIS Based Modeling and Prediction of the Driver-Vehicle Unit Behavior in Overtaking Scenarios
Overtaking a slow lead vehicle is a complex maneuver because of the variety of overtaking conditions and driver behavior. In this study, two novel prediction models for overtaking behavior are proposed. These models are derived based on multi-input multi-output adaptive neuro-fuzzy inference system (MANFIS). They are validated at microscopic level and are able to simulate and predict the fut...
متن کاملUsing the Reaction Delay as the Driver Effects in the Development of Car-Following Models
Car-following models, as the most popular microscopic traffic flow modeling, is increasingly being used by transportation experts to evaluate new Intelligent Transportation System (ITS) applications. A number of factors including individual differences of age, gender, and risk-taking behavior, have been found to influence car-following behavior. This paper presents a novel idea to calculate ...
متن کاملLane Change Trajectory Model Considering the Driver Effects Based on MANFIS
The lane change maneuver is among the most popular driving behaviors. It is also the basic element of important maneuvers like overtaking maneuver. Therefore, it is chosen as the focus of this study and novel multi-input multi-output adaptive neuro-fuzzy inference system models (MANFIS) are proposed for this behavior. These models are able to simulate and predict the future behavior of a Dri...
متن کاملDeveloping a Model of Heterogeneity in Driver’s Behavior
Intelligent Driver Model (IDM) is a well-known microscopic model of traffic flow within the traffic engineering societies. While it is a powerful technique for modeling traffic flows, the Intelligent Driver Model lacks the potential of accommodating the notion of drivers’ heterogeneous behavior whenever they are on roads. Concerning the above mentioned, this paper takes the lane to recognize th...
متن کاملAn investigation on the integrated human driver model for closed-loop simulation of intelligent safety systems
This paper presents an integrated human driver model for a closed-loop simulation of the intelligent safety system. A lateral human driver model was developed to represent the steering behavior of a human driver using the finite preview optimal control method. A longitudinal human driver model represents a human driver’s throttle and brake control behavior relative to the preceding vehicle moti...
متن کاملPrediction of Driver’s Accelerating Behavior in the Stop and Go Maneuvers Using Genetic Algorithm-Artificial Neural Network Hybrid Intelligence
Research on vehicle longitudinal control with a stop and go system is presently one of the most important topics in the field of intelligent transportation systems. The purpose of stop and go systems is to assist drivers for repeatedly accelerate and stop their vehicles in traffic jams. This system can improve the driving comfort, safety and reduce the danger of collisions and fuel consumption....
متن کامل